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Abstract: Precise segmentation of retinal vessels plays an important role in computer-assisted
diagnosis. Deep learning models have been applied to retinal vessel segmentation, but the
efficacy is limited by the significant scale variation of vascular structures and the intricate
background of retinal images. This paper supposes a cross-channel spatial attention U-Net
(CCS-UNet) for accurate retinal vessel segmentation. In comparison to other models based on
U-Net, our model employes a ResNeSt block for the encoder-decoder architecture. The block
has a multi-branch structure that enables the model to extract more diverse vascular features. It
facilitates weight distribution across channels through the incorporation of soft attention, which
effectively aggregates contextual information in vascular images. Furthermore, we suppose an
attention mechanism within the skip connection. This mechanism serves to enhance feature
integration across various layers, thereby mitigating the degradation of effective information.
It helps acquire cross-channel information and enhance the localization of regions of interest,
ultimately leading to improved recognition of vascular structures. In addition, the feature fusion
module (FFM) module is used to provide semantic information for a more refined vascular
segmentation map. We evaluated CCS-UNet based on five benchmark retinal image datasets,
DRIVE, CHASEDB1, STARE, IOSTAR and HRF. Our proposed method exhibits superior
segmentation efficacy compared to other state-of-the-art techniques with a global accuracy
of 0.9617/0.9806/0.9766/0.9786/0.9834 and AUC of 0.9863/0.9894/0.9938/0.9902/0.9855 on
DRIVE, CHASEDB1, STARE, IOSTAR and HRF respectively. Ablation studies are also
performed to evaluate the the relative contributions of different architectural components. Our
proposed model is potential for diagnostic aid of retinal diseases.
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1. Introduction

Retinal vessel structure analysis has been extensively used to detect disorders like diabetic
retinopathy [1,2]. The captured retinal vasculature can be used to evaluate the severity of
retinal diseases and the efficacy of treatments. The reinal pathology is also related to other
body abnormalities, such as diabetes, cirrhosis and nephritis. Thus, the segmentation of retinal
vasculature is one of the crucial steps in ophthalmic clinic. The experienced doctors may focus
on the morphological properties, such as length, width, curvature, or how the vessels branch and
angle.

Accurate segmentation in retinal vasculature is of great assistance in aquring the morphological
information. Nevertheless, manual vessel segmentation is tedious, time-consuming and heavily
related to physician experience. Many minor, fragile, tightly connected vessels exist in the retina,
and there is no apparent difference between the vessel part and the background. Furthermore,
noise and uneven illumination might affect the fundus picture. At present, there are two main
types of methods for retinal vessel segmentation: supervised learning methods and unsupervised
learning methods.

#495766 https://doi.org/10.1364/BOE.495766
Journal © 2023 Received 18 May 2023; revised 14 Jul 2023; accepted 9 Aug 2023; published 18 Aug 2023

https://orcid.org/0000-0002-4669-1025
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.495766&amp;domain=pdf&amp;date_stamp=2023-08-18


Research Article Vol. 14, No. 9 / 1 Sep 2023 / Biomedical Optics Express 4740

Unsupervised learning methods do not require the utilization of human-annotated labels as
reference points. Unsupervised techniques can be classified into two distinct groups: matched
filter-based approaches [3–5] and model-based approaches [6–8]. Mendonca et al. [9] employed
four directional difference operators and morphological techniques to extract vascular centerlines.
Segmented vascular trees were obtained by Fraz et al. [10] through the utilization of first-order
derivatives of Gaussian filters in four directions and a multidirectional morphological top-hat
operator. Zhao et al. [11] introduced an innovative infinite active contour model that leverages the
blended region data from images to effectively segment blood vessels. Lam et al. [12] introduced
a novel method for vessel segmentation using a multi-concave modeling approach. This approach
incorporates three distinct metrics, namely the distinguishable concave metric, linear concave
metric, and locally normalized concave metric. In general, unsupervised techniques do not
necessitate training and labeling data, thereby significantly mitigating labor-intensive efforts.
Unsupervised techniques typically need a feature extractor that is manually crafted, relying on
prior knowledge and performing adequately for images with a solitary background. However,
such methods are not satisfactory for learning retinal images with multiple features or more
intricate backgrounds.

Supervised learning methods usually require expert-labeled samples to train the model, which
can achieve relatively accurate results. Deep neural networks (DNNs) were introduced by
Laskowski et al. [13] for vessel segmentation, and they showed good accuracy on the DRIVE
dataset. DNNs and fully connected conditional random fields (CRFs) were merged by Fu et
al. [14] who approached the vascular segmentation problem as a border detection challenge.
In order to segment out more fine vessels and lessen false positives at vessel boundaries, Son
et al. [15] suggested a strategy based on generative adversarial training. To cope with retinal
images in complex backgrounds, including low-contrast vascular structures and lesion areas, Mo
and Zhang [16] created a fully convolutional network based on deep supervision, which used
multi-scale stratification features with different receptive field. Considering the high imbalance
between the number of coarse and fine vessels, Yan et al. [17] proposed a three-stage retinal
vessel segmentation network, namely coarse vessel segmentation, fine vessel segmentation and
vessel fusion, and the learned discriminative features were able to better segment coarse and fine
vessels. In addition, several studies have been devoted to improving the loss function, Yan et al.
[18] examined a loss function that integrated segment-level and pixel-level losses in order to
effectively account for the significance of vessels across various scales.

At present, U-Net [19] has recently gained popularity as the most effective architecture for
vessel segmentation tasks and has demonstrated exceptional performance in the medical industry.
In order to make up for the lost details caused by pooling operation, U-Net uses skip connection
to fuse neighbouring hierarchical features, and produces impressive vessel segmentation results
from a tiny dataset. The U-Net architecture’s straightforward model structure and effective
vascular segmentation capabilities have garnered increasing attention among scholars as a
backbone network for fundus image segmentation. Consequently, numerous U-Net variants
have been proposed. Lian et al. [20] introduced a novel approach for precise retinal vessel
segmentation, which overcomes the limitations of other models that rely solely on global features
and struggle to handle local intricacies. Their method involves an enhanced residual U-Net
that incorporates both global and local features. DEU-Net [21] employed a spatial encoding
path and a context encoding path to capture the intricate spatial and semantic details in vascular
images. Additionally, it integrated a channel attention mechanism to facilitate feature map
selection. CE-Net [22] proposed a contextual encoder network for the purpose of preserving
spatial information in 2D medical image segmentation, while also capturing high-level semantic
information. Li et al. [23] introduced a U-Net architecture that is lightweight and incorporates
an attention mechanism within the decoder stage. This design aims to capture both global and
augmented features. The attention gate module proposed by Oktay et al. [24] is designed to
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selectively suppress non-relevant factors in an image and concentrate on vessels of varying sizes,
resulting in the production of precise vessel segmentation maps. In order to extract effective
multiscale feature information and make full use of the deep feature map, NFN+ [25] used
a cascaded U-Net structure to transfer the multiscale features and vascular probability map
obtained from the shallow layer to the deep layer by skip connections, and the backend network
further refines the map. Wu et al. [26] introduced an innovative scale and context-sensitive
network (SCS-Net) to address the challenges posed by multiscale vascular changes and intricate
vascular environments. The SCS-Net introduces a semantic aggregation module (SFA), which
aims to facilitate the extraction of multi-scale information. Additionally, the network proposes
an adaptive feature fusion module to improve the fusion of information across adjacent layers.
Wang et al. [27] proposed a hard attention network, which mainly consists of three decoders, one
decoder is used for the identification of hard and easy regions, and the other two are responsible
for the segmentation of hard and easy regions, respectively. Some other techniques have been
developed to improve the connection mechanism of U-Net, including augmenting the number of
skip connections and employing multiple image coding paths to effectively capture information
[28–30]. Some other approaches assist the network training by inserting filters in U-Net. Yin et
al. [31] proposed a multi-scale input U-shaped network (SU-Net), which includes a guided image
filter module to recover structural information through the guidance image. DF-Net [32] inserts
a Frangi filter into the feature fusion module to obtain a compact yet domain invariant feature
representation by fusing the vessel responses obtained from the filter with deep features. Not
satisfied with the limitations of CNN on receptive field, some researches are devoted to integrate
transformer into U-Net, and TransUNet [33] is better to extract features by adding transformer
branch at the end of the encoder of U-Net, while UTNet [34] adds improved transformer module
at the encoder and decoder stages respectively. This hybrid model uses the spatial induction bias
specific to convolution to avoid large-scale pre-training on the one hand, and the transformer to
capture global features on the other.

Despite the relatively favourable segmentation outcomes that the aforementioned U-shaped
network can attain, it still exhibits deficiencies for retinal vessel segmentation. The limited
feature extraction capability of many networks poses a challenge in extracting valuable vascular
information from retinal images with low contrast, lesion area, optic disc, and optic cup in a
complex semantic context. The vascular structure has multi-scale variations and unbalanced
class distributions in retinal images. Therefore we need a more effective attention module to
help the network to recognize the vascular structure adaptively. Considering the impact of
downsampling operations, an effective fusion strategy is also crucial for aggregating spatial and
semantic information.

Based on the above problems, we supposes a cross-channel spatial attention U-Net (CCS-UNet)
for accurate retinal vessel segmentation. The primary components of the system are comprised
of three fundamental modules. Firstly, we replace the original common convolutional block
with ResNeSt block [35], which adopts a multi-branch structure to help the network identify
more diverse vessel features. Split attention can help the network extract contextual information
through channel attention. Secondly, considering the semantic differences between different
feature layers, we introduce the CCS module into the skip connection for feature layer information
fusion and accurate vessel structure recognition. Finally, deep supervision is introduced to
provide the network with more semantic information through multiple lateral output layers to help
the network training, while obtaining a more refined vascular segmentation map. In summary,
this paper has three main contributions:

1) We supposed a novel network named CCS-UNet, which used ResNeSt as the backbone
of the encoder-decoder architecture. Facing the retinal images under complex semantics, the
multi-branch structure of the ResNeSt block helps the network extract more diverse vascular
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features, and each subsequent grouping uses split attention for feature fusion, which effectively
aggregates the contextual information around the vessels using the spatial attention mechanism.

2) We added the CCS module to the skip connection, which facilitates the integration of spatial
and semantic information, compensates for the information loss caused by the downsampling
operation. In addition, the resulting attention map helps the network obtain cross-channel
information and improve the identification of regions of interest for better recognition of vascular
structures.

3) The feature fusion module (FFM) was employed to enhance the segmentation accuracy by
obtaining more comprehensive semantic representations from the side-output layers through the
provision of supplementary supervision during the initial phases of the decoder network.

2. Methodology

The overall architecture of our designed CCS-UNet is shown in Fig. 1, which adopts a U-shaped
structure design with five encoder levels and symmetrical decoder layers and mainly consists of
three core modules, including ResNeSt block, CCS and FFM. The ResNeSt block is embedded in
the encoder and is mainly used to enhance the feature extraction capability of the model, thus
extract more diverse vascular features and aggregate contextual semantic information in retinal
images under complex semantics. The CCS is used to guide the information fusion of adjacent
feature layers. CCS recovers the information loss caused by the downsampling operation. The
generated attention map aids the network in obtaining cross-channel information and improving
the identification of regions of interest for better vascular structure detection. Finally, we inserted
the FFM module to provide more semantic information of the network through multiple lateral
outputs to obtain finer vascular segmentation maps.

Fig. 1. The structure of our proposed CCS-UNet.

2.1. ResNeSt block

The ResNeSt [35] module is a residual architecture that incorporates a split attention mechanism.
The primary characteristic of the ResNeSt module is its ability to consider a sequence of
representations as a fusion of distinct feature groups, thereby providing focused attention to these
groups. Fig. 2 depicts the intricate structure of ResNeSt. This work categorizes the input features
X ∈ RH×W×C along the channel dimension into two equally cardinal groups. For every pair of
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cardinals, there are two parallel feature information streams. Each feature information branch
contains a 1 × 1 convolutional layer, a 3 × 3 convolutional layer, Batch normalization, and ReLU
layers, and the output feature map size is H × W × C/4.

Fig. 2. The structure of the ResNeSt block.

In addition, to integrate the feature maps of each feature information branch, this paper adds
a split attention module after each cardinal group. Fig. 3 depicts the split attention module.
The initial step of the split attention module involves the fusion of feature maps from two
distinct branches, which are identified as B1 and B2, via an element-wise summation operation.
Channel-wise statistics S are computed through global pooling.

S =
1

H × W

H∑︂
i=1

W∑︂
j=1

[B1(i, j) + B2(i, j)] (1)

Fig. 3. The flowchart of the Split Attention.

S undergoes processing via two fully connected layers, followed by a softmax layer, resulting
in the production of C1 and C2. C1 and C2 denote the soft attention weights assigned to the
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channel dimension of B1 and B2, respectively, which is utilized to produce:⎧⎪⎪⎨⎪⎪⎩
V1 = C1 · B1

V2 = C2 · B2
(2)

the symbol · denotes the element-wise multiplication across channels, the output of the cardinal
group is

V = V1 + V2 (3)

further, each cardinal group (denoted as U1 and U2 ) is merged across the channel axis, and then
passes through a 1 × 1 convolution layer to generate:

Z = f 1×1([U1, U2]) (4)

where f 1×1(·) represents the 1 × 1 convolution operation, [·, ·] is a symbol for a channel
concatenation process. The final output of the ResNeSt block is generated through a shortcut
connection:

Y = Z + T(X) (5)

the function T denotes a suitable operation for transformation, such as stride, combined convolution
with pooling, or residual connections with identity mapping to ensure the alignment of output
shapes.

2.2. Feature fusion module

The task of retina vessel segmentation involves binary classification at the pixel level. This research
employs a cross-entropy loss function to calculate the loss for individual lateral output layers.
The ultimate loss function is derived by computing the average of the losses of these classifier
layers. The inclusion of deep supervision during the training phase has been demonstrated to
enhance the accuracy of the ultimate network [36]. Additionally, the prompt delivery of gradient
information in the early stages of training is advantageous in mitigating gradient disappearance.
The final loss function is formulated as:

Lloss =
1
N

N∑︂
n=1

Lcross−entropy(y, y′) (6)

where N represents the number of layers of the side output layer, which is set to 4 in our study.
Lcross−entropy represents the cross-entropy loss, which is officially expressed as:

Lcross−entropy (y, y′) = −
1
S

S∑︂
i=1

(yi log (yi
′) + (1 − yi) log (1 − yi

′)) (7)

where S represents the number of pixels of the retinal image, y′ represents the predicted probability
value, and y represents the true value of the label. As seen in Fig. 1, the network as a whole
contains four classifier layers. Each decoder path is associated with a single output layer on
one side, and the fifth classifier layer is formed by summing and averaging the preceding four
layers. The ultimate forecast is regarded as the fifth layer of classification, which merges the four
preceding classifiers.

2.3. Attention module

The CCS module was devised to achieve two objectives: firstly, to facilitate the efficient aggregation
of spatial and semantic information, and secondly, to acquire cross-channel information and
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enhance the identification of regions of interest to improve the recognition of vascular structures.
CCS module consists of two parallel branches, one used to obtain cross-channel information
and the other to enhance the area of interest identification. As illustrated in Fig. 4, the input
tensor F ∈ RH×W×C is initially received by the two branches of the attention module. The initial
branch of the network encodes each channel of the input feature map F by applying two spatial
domain pooling kernels, namely (H, 1) and (1, W), across both horizontally and vertically. The
final coded feature maps ZW and ZH that aggregate features along the horizontal and vertical
directions, respectively, are generated. This process aids in the precise identification of the region
of interest. The mathematical representation of ZH of the c-th channel at a given height h is
expressed in the following manner:

ZH
c (h) =

1
W

∑︂
0≤i<W

Xc(h, i) (8)

where Xc(h, i) denotes the row vector of input features on a given channel c and height h. Similarly,
the mathematical representation of ZW of the c-th channel at a given width w is expressed in the
following manner:

ZW
c (w) =

1
H

∑︂
0≤j<H

Xc(j, w) (9)

where Xc(j, w) denotes the column vector of input features on a given channel c and width w.
The feature map acquired along different directions is concatenated in the spatial dimension.
Subsequently, the 1 × 1 convolution layer is employed to generate the following:

Fmid = δ(f 1×1([ZH , ZW ])) (10)

where [·, ·] represents a concatenation operation along the spatial dimension, the non-linear
activation function Swish is represented by the symbol δ. f 1×1 denotes a convolutional operation
with a convolutional kernel size of 1×1. The middle feature map, denoted by Fmid ∈ R(H+W)×(C/r),
is responsible for horizontal and vertical spatial information encoding. The variable r is utilized
to regulate the magnitude of the channel dimension [37]. Then, the tensor Fmid was partitioned
into two separate tensors FH ∈ RH×(C/r) and FW ∈ RW×(C/r) across the spatial dimension in the
same way as originally concatenated. Ultimately, the channel dimensions of tensors FH and
FW are adjusted to align with those of the input tensor F through the utilization of two 1 × 1
convolution layers.

GH = σ(f 1×1(FH)) (11)

GW = σ(f 1×1(FW )) (12)

where σ is the sigmoid function. Using the GH and GW as attention weights, generates:

FC(i, j) = F(i, j) · GH(i) · GW (j) (13)

where the symbol · denotes the element-wise multiplication across channels.
Similarly, in the second branch, first, the input feature map F ∈ RH×W×C are operated

by averaging pooling and max pooling of the channel dimensions to generate feature maps
FS

MP ∈ RH×W×1 and FS
AP ∈ RH×W×1 respectively. The feature map undergoes concatenation

along the channel dimension, followed by the application of a 7 × 7 convolutional transform
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Fig. 4. The structure of cross-channel spatial attention.

function to produce a spatial attention map MS(F) ∈ RH×W×1, finally generate:

FS = F · MS(F)

= F · σ
(︂
f 7×7([MaxPool(F), AvgPool(F)])

)︂
= F · σ

(︂
f 7×7

(︂ [︁
FMP

S , FAP
S
]︁ )︂)︂ (14)

where f 7×7 denotes a convolutional operation with a convolutional kernel size of 7 × 7 and σ(■)
denotes the sigmoid activation function. [·, ·] represents a concatenation operation along the
channel dimension. Finally, the output of the CCS module can be expressed as Fout = (FC+FS)/2
by averaging the two branches. Supplement 1 lists the definitions of the variables and the symbols.

3. Experiments

3.1. Data preparation

This paper employs five publicly accessible retinal vascular datasets: DRIVE [38], STARE [39],
CHASEDB1 [40], IOSTAR [41], and HRF(High-Resolution Fundus) [42].

DRIVE: The DRIVE dataset was collected by a diabetic fundus screening organization from
the Netherlands. There are a total of 40 fundus images in the DRIVE dataset, seven of which
depict early diabetic retinopathy. Each image resolution is 565 × 584 pixels. We followed
the official criteria and employed a sample of 20 images for the purpose of training, while the
remaining 20 images are reserved for testing. The provided images exhibit the segmentation
outcomes from two professionals along with their respective masks.

STARE: The STARE dataset comprises a total of 20 images, out of which 10 depict instances of
retinopathy. Each image resolution is 605 × 700 pixels, and each image contains the segmentation
results of two experts. 10-fold cross-validation was employed due to the absence of an official

https://doi.org/10.6084/m9.figshare.23921790
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partition between training and test sets. We divided the dataset into 10 groups, and each group
contained two images. In the training process, the training set consisted of 9 groups, while the
test set comprised the remaining groups, with 10 training rounds until all images were tested.

CHASEDB1: The dataset denoted as CHASEDB1 is composed of a total of 28 fundus images,
which were obtained from a sample of 14 children of school age. Each image resolution is of 999
× 960 pixels. This paper employed a methodology whereby the initial 20 images were designated
for the purpose of training, while the remaining eight images were reserved for testing.

IOSTAR: The IOSTAR dataset consists of 30 scanninglLaser ophthalmoscopy (SLO) images.
Each image resolution is 1024 × 1024 pixels. The dataset has been annotated by a group of
experts in the domain of retinal image analysis, with each vessel being meticulously labeled. The
initial 25 images were designated for the purposes of training while the remaining images were
reserved for testing.

HRF: The HRF dataset comprises a total of 45 images, comprising 15 images for each category:
healthy individuals, patients diagnosed with glaucoma, and patients diagnosed with diabetic
retinopathy. The images are captured at a resolution of 3504 × 2336 pixels. The binary gold
standard vascular segmentation image in each instance has been produced by a group of retinal
image analysis scholars and physicians from associated eye hospitals. The initial 10 images from
each category were chosen for the purpose of training, resulting in a training set of 30 images. In
contrast, the remaining images were allocated to the test set.

3.2. Data augmentation

This study employed various data augmentation techniques to enhance the image generalization
ability prior to network training. Specifically, a random horizontal flip with a probability of 0.5,
a random rotation within the range of −20◦ to 20◦, and a gamma contrast enhancement of 0.5 to
2 were utilized.

3.3. Implementation details

The PyTorch framework was utilized to train and validate the model suggested in this paper. We
configured the network’s learning rate to 0.01, and implemented a decay strategy whereby the
learning rate was reduced to one-tenth of its current value in each 10 epoch. During the training
phase, the model underwent training using the Adam [43] optimizer with default parameters while
employing a binary cross-entropy loss function. We configured the training process to execute
100 epochs and terminated the training procedure upon reaching the maximum epoch value.
The batch size was set to 2. To maintain experimental precision, all experimental procedures
conducted in this paper were executed on a singular computer system. The GPU used in this
computer is an NVIDIA GTX 3090–main software environment: python 3.6, Ubuntu 16.04, and
PyTorch 1.7.0.

3.4. Evaluation criteria

This study employs nine frequently utilized evaluation metrics to assess the experimental
outcomes, namely accuracy (ACC), sensitivity (SEN), specificity (SPE), false discovery rate
(FDR), dice coefficient (DICE), gmean score [44], intersection over union (IOU), precision (PRE),
and area under curve (AUC). These evaluation metrics can objectively show the strengths and
weaknesses of different vessel segmentation methods. The SEN has the capacity to accurately
represent the ratio of vessel pixels that are correctly identified. The SPE demonstrates the
proportion of pixels correctly identified as non-vessel pixels. The evaluation criteria is defined as:

ACC =
TN + TP

TN + TP + FN + FP
(15)

SEN =
TP

TP + FN
(16)



Research Article Vol. 14, No. 9 / 1 Sep 2023 / Biomedical Optics Express 4748

SPE =
TN

TN + FP
(17)

FDR =
FP

TP + FP
(18)

DICE =
2 × TP

FP + FN + 2 × TP
(19)

Gmean =
√

SEN × SPE (20)

IOU =
TP

FP + FN + TP
(21)

PRE =
TP

FP + TP
(22)

True positive (TP) refers to the vascular pixels that are accurately classified, while false positive
(FP) pertains to the background pixels that are misclassified as the vascular. Likewise, TN
(true negative) refers to pixels accurately categorized as background, while FN refers to pixels
inaccurately classified as background. The model is also assessed by AUC, a higher value of
AUC, approaching 1, indicates superior model performance.

4. Results

4.1. Comparisons with the state-of-the-art methods

In order to validate the superiority of the proposed CCS-UNet model, we conducted comparison
experiments on five retinal image datasets. At the same time, eight prevalent methods, including
U-Net [19], Att-UNet [24], U-Net++ [30], CE-Net [22], SU-Net [31], UTNet [34], TransUNet
[33], and DF-Net [32], were selected to adopt the same training strategy and experimental
environment.

4.1.1. Visual comparison

The visual performance of CCS-UNet is compared with other models in Fig. 5. In these models,
U-Net has severe loss of edges for fine vessels. Att-UNet mainly provides an attention gate
module to generate local weight maps for effective vessel recognition, but the simple structure
limits the acquisition of global information. In contrast, although TransUNet and UTNet can
effectively extract global information, their excessive model parameters are not suitable for
retinal images with small datasets, and the overfitting problem still exists. SU-Net and DF-Net
address the issue of information loss resulting from the downsampling procedure through the
incorporation of filters, but their simple information fusion approach makes it challenging to
effectively fuse different levels of features in the network, and many discontinuous vessels appear
in their segmentation maps. Similarly, CE-Net employs multi-scale feature extraction modules
to facilitate the extraction of semantic information, ignoring the role of feature fusion for the
network and making it difficult to suppress noise effects.

In contrast, our proposed CCS-UNet obtains cross-channel information and improves the
recognition of interest regions by introducing CCS in the skip connection. Our model effectively
performs feature fusion to get a more continuous vessel segmentation map. Although U-Net++
achieves good results by fusing multiple feature layers of different scales, its feature extraction
ability in the encoder stage must be improved for fine vessels segmentation. With the addition of
the ResNeSt block, our CCS-UNet model is greatly enhanced in feature extraction capability
and can cope with more complex semantic distribution of blood vessels. Fig. 6 shows the ROC
curves for our CCS-UNet and eight other models across five datasets. Our ROC curve is closer
to the upper left corner than others, which demonstrates that CCS-UNet has the higher accuracy
of vessel segmentation in all of the five datasets.
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Fig. 5. Results of typical segmentation using different models in five classic datasets.
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Fig. 6. ROC curves for different models: (a) DRIVE, (b) CHASEDB1, (c) STARE, (d)
IOSTAR, (e) HRF.

4.1.2. Statistical evaluation

Quantitative methods is imperative for precisely and objectively evaluating experimental outcomes.
We conducted comparison experiments on five datasets using nine evaluation metrics, and all
models used the same experimental environment to guarantee fair comparison. According to the
results presented in Table 1 for the DRIVE dataset, our proposed CCS-UNet model demonstrates
superior performance across most evaluation metrics. Notably, the model achieves highest in
AUC score 0.9863, ACC score 0.9617, and SEN score 0.7789, indicating that our network can
identify more fine vessels. Although the SPE value (0.9839) was 0.17% lower compared to
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Att-UNet (0.9856), our SEN value (0.7789) is 3.47% higher than Att-UNet (0.7442), and the
other evaluation metrics of our model are also significantly superior. The results obtained for the
CHASEDB1 dataset, as presented in Table 2, indicate that the CCS-UNet model attained the
maximum values for all metrics except SPE. Compared with U-Net, the SEN value increases
directly from 0.7553 to 0.8331, while the AUC and ACC values increase from 0.9741/0.9789
to 0.9894/0.9806, respectively. Only SPE is slightly lower than other methods, but the balance
between our SEN and SPE is better. Table 3 records the experimental results for the STARE
dataset, and again, our model still achieves the highest AUC, ACC, and SEN values compared to
other models. In addition, we also conducted experiments on the HRF and IOSTAR datasets
compared with other models, as presented in Table 4 and Table 5. We also presents an expanded
set of evaluation metrics, namely IOU, gmean, FDR, PRE, and DICE, to comprehensively
assess the model’s performance on these five datasets. Table 1–5 demonstrate that CCS-UNet
outperforms other methods in most metrics, indicating its superiority in vessel segmentation. The
results demonstrate that our model exhibits superior vessel segmentation capabilities compared
to other models when confronts with various retinal images containing intricate structures.

Table 1. Comparisons of existing approaches on DRIVE.

Method Year ACC AUC SEN SPE IOU Gmean FDR PRE DICE

U-Net [19] 2015 0.9586 0.9749 0.7354 0.9856 0.6539 0.8505 0.0313 0.9686 0.9770

Att-UNet [24] 2018 0.9595 0.9839 0.7442 0.9856 0.6619 0.8556 0.0304 0.9596 0.9775

U-Net++[30] 2018 0.9602 0.9852 0.7553 0.9850 0.6685 0.8617 0.0291 0.9708 0.9778

CE-Net [22] 2019 0.9576 0.9830 0.7473 0.9830 0.6521 0.8566 0.0300 0.9699 0.9764

SU-Net [31] 2020 0.9598 0.9848 0.7538 0.9848 0.6663 0.8611 0.0293 0.9706 0.9776

UTNet [34] 2021 0.9601 0.9766 0.7617 0.9841 0.6700 0.8650 0.0283 0.9716 0.9778

TransUNet [33] 2021 0.9590 0.9839 0.7541 0.9838 0.6623 0.8608 0.0292 0.9707 0.9772

DF-Net [32] 2022 0.9608 0.9857 0.7704 0.9841 0.6771 0.8702 0.0284 0.9724 0.9782

Ours 2023 0.9617 0.9863 0.7789 0.9839 0.6841 0.8748 0.0264 0.9735 0.9786

4.2. Ablation studies

In order to assess the significance of individual modules within the proposed model, we
incorporated each module into U-Net independently. Then the network was trained to utilize
the DRIVE, CHASEDB1, STARE, IOSTAR, and HRF datasets, with the experimental design
depicted in Fig. 7. The impact of each module on the performance of vascular segmentation in
different datasets is presented in Table 6–10.

4.2.1. Effectiveness of the ResNeSt block

Initially, we examine the effectiveness of the ResNeSt [35] block. The suggested ResNeSt block,
denoted as ’U-Net+ResNeSt block’, as seen in Table 6, raises the AUC and SEN by 1.14% and
2.52% (from 0.9749/0.7354 to 0.9863/0.7606, respectively) and an increase of about 0.26% in
ACC when compared to ’U-Net’. Besides that, all other indicators increased to some extent. To
verify the reliability of the module, we also performed ablation experiments on four other retinal
datasets. As seen in Table 7–10, most metrics on all datasets are improved with the addition of
the ResNeSt block, which helps improve extract features and identifies more fine vessels.

4.2.2. Effectiveness of the CCS

The recommended CCS module is incorporated into the U-Net architecture, denoted as ’U-
Net+CCS’, and subsequently employed in the DRIVE dataset. As demonstrated in Table 6,
compared to the U-Net, ’U-Net+CCS’ enhances SEN and ACC performance from 0.7354/0.9586
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Table 2. Comparisons of existing approaches on CHASEDB1.

Method Year ACC AUC SEN SPE IOU Gmean FDR PRE DICE

U-Net [19] 2015 0.9789 0.9741 0.7553 0.9900 0.6230 0.8637 0.0120 0.9879 0.9889

Att-UNet [24] 2018 0.9796 0.9872 0.7986 0.9885 0.6429 0.8876 0.0098 0.9901 0.9893

U-Net++[30] 2018 0.9794 0.9865 0.8104 0.9876 0.6442 0.8942 0.0092 0.9907 0.9892

CE-Net [22] 2019 0.9786 0.9868 0.8280 0.9858 0.6400 0.9032 0.0083 0.9916 0.9887

SU-Net [31] 2020 0.9794 0.9860 0.7476 0.9907 0.6256 0.8601 0.0122 0.9877 0.9892

UTNet [34] 2021 0.9800 0.9872 0.7850 0.9894 0.6436 0.8808 0.0104 0.9895 0.9895

TransUNet [33] 2021 0.9803 0.9882 0.7730 0.9904 0.6433 0.8745 0.0110 0.9889 0.9896

DF-Net [32] 2022 0.9792 0.9855 0.7999 0.9886 0.6352 0.8884 0.0096 0.9903 0.9891

Ours 2023 0.9806 0.9894 0.8331 0.9878 0.6637 0.9070 0.0081 0.9918 0.9898

Table 3. Comparisons of existing approaches on STARE.

Method Year ACC AUC SEN SPE IOU Gmean FDR PRE DICE

U-Net [19] 2015 0.9686 0.9838 0.7924 0.9842 0.6761 0.8829 0.0183 0.9816 0.9829

Att-UNet [24] 2018 0.9691 0.9888 0.7756 0.9862 0.6748 0.8742 0.0197 0.9802 0.9832

U-Net++[30] 2018 0.9702 0.9901 0.8183 0.9822 0.6846 0.8963 0.0161 0.9838 0.9830

CE-Net [22] 2019 0.9709 0.9893 0.7762 0.9881 0.6858 0.8752 0.0195 0.9804 0.9842

SU-Net [31] 2020 0.9726 0.9910 0.8004 0.9879 0.7059 0.8888 0.0176 0.9823 0.9851

UTNet [34] 2021 0.9704 0.9886 0.8233 0.9834 0.6968 0.8996 0.0156 0.9843 0.9839

TransUNet [33] 2021 0.9727 0.9899 0.7787 0.9898 0.6997 0.8774 0.0193 0.9806 0.9852

DF-Net [32] 2022 0.9719 0.9903 0.7757 0.9893 0.6938 0.8759 0.0197 0.9802 0.9847

Ours 2023 0.9766 0.9938 0.8435 0.9883 0.7468 0.9129 0.0138 0.9861 0.9872

Table 4. Comparisons of existing approaches on IOSTAR.

Method Year ACC AUC SEN SPE IOU Gmean FDR PRE DICE

U-Net [19] 2015 0.9759 0.9794 0.8190 0.9920 0.7451 0.9001 0.0156 0.9843 0.9881

Att-UNet [24] 2018 0.9783 0.9893 0.8434 0.9903 0.7542 0.9128 0.0137 0.9862 0.9882

U-Net++[30] 2018 0.9782 0.9894 0.8491 0.9896 0.7543 0.9156 0.0131 0.9868 0.9882

CE-Net [22] 2019 0.9762 0.9865 0.8468 0.9874 0.7359 0.9136 0.0134 0.9865 0.9869

SU-Net [31] 2020 0.9781 0.9895 0.8769 0.9870 0.7594 0.9295 0.0109 0.9892 0.9881

UTNet [34] 2021 0.9773 0.9898 0.8601 0.9877 0.7500 0.9208 0.0123 0.9876 0.9876

TransUNet [33] 2021 0.9774 0.9870 0.8668 0.9871 0.7521 0.9242 0.0116 0.9883 0.9877

DF-Net [32] 2022 0.9783 0.9895 0.8727 0.9876 0.7600 0.9275 0.0111 0.9888 0.9882

Ours 2023 0.9786 0.9902 0.8772 0.9876 0.7643 0.9301 0.0107 0.9892 0.9884

to 0.7430/0.9589, respectively. Furthermore, as seen in Table 7–10, the addition of the CCS
module also improves most metrics. The results indicate that with the addition of the CCS module,
the network can perform more effective feature fusion and obtain more semantic information
about the target vessels and a more continuous vessel segmentation map.

We also integrate both CCS and ResNeSt blocks into the U-Net, denoted as ’U-Net+CCS+
ResNeSt block’, in order to evaluate the potential synergistic effects of these two modules.
Compared to the U-Net, the accuracy of segmentation has been significantly enhanced, as shown
in Table 6, with an apparent increase of around 3.5% and 1.14% in terms of SEN and AUC,
respectively, Even if there is a slight decrease in SPE (0.10%), this is acceptable. The results



Research Article Vol. 14, No. 9 / 1 Sep 2023 / Biomedical Optics Express 4753

Table 5. Comparisons of existing approaches on HRF.

Method Year ACC AUC SEN SPE IOU Gmean FDR PRE DICE

U-Net [19] 2015 0.9809 0.9707 0.6983 0.9939 0.6194 0.8308 0.0138 0.9861 0.9900

Att-UNet [24] 2018 0.9823 0.9838 0.7024 0.9952 0.6369 0.8334 0.0136 0.9863 0.9907

U-Net++[30] 2018 0.9831 0.9850 0.7325 0.9949 0.6618 0.8523 0.0124 0.9875 0.9912

CE-Net [22] 2019 0.9812 0.9776 0.7146 0.9937 0.6325 0.8415 0.0132 0.9867 0.9902

SU-Net [31] 2020 0.9832 0.9845 0.7810 0.9927 0.6750 0.8798 0.0103 0.9896 0.9912

UTNet [34] 2021 0.9825 0.9854 0.7079 0.9955 0.6466 0.8382 0.0136 0.9863 0.9909

TransUNet [33] 2021 0.9810 0.9782 0.7248 0.9930 0.6344 0.8471 0.0128 0.9871 0.9871

DF-Net [32] 2022 0.9832 0.9849 0.7669 0.9932 0.6734 0.8722 0.0107 0.9892 0.9912

Ours 2023 0.9834 0.9855 0.7671 0.9936 0.6769 0.8720 0.0109 0.9890 0.9913

Fig. 7. Different models examined in our ablation studies.

Table 6. Ablation studies of our proposed method on DRIVE.

Method ACC AUC SEN SPE IOU Gmean FDR PRE DICE

U-Net 0.9586 0.9749 0.7354 0.9856 0.6539 0.8505 0.0313 0.9686 0.9770

U-Net+CCS 0.9589 0.9762 0.7430 0.9850 0.6580 0.8548 0.0305 0.9694 0.9771

U-Net+ResNeSt block 0.9612 0.9863 0.7606 0.9856 0.6762 0.8651 0.0284 0.9715 0.9784

U-Net+CCS
0.9613 0.9863 0.7704 0.9846 0.6798 0.8702 0.0274 0.9725 0.9785

+ResNeSt block

U-Net+CCS
0.9617 0.9863 0.7789 0.9839 0.6841 0.8748 0.0264 0.9735 0.9786

+ResNeSt block+FFM
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Table 7. Ablation studies of our proposed method on CHASEDB1.

Method ACC AUC SEN SPE IOU Gmean FDR PRE DICE

U-Net 0.9789 0.9741 0.7553 0.9900 0.6230 0.8637 0.0120 0.9879 0.9889

U-Net+CCS 0.9786 0.9757 0.7804 0.9883 0.6260 0.8775 0.0107 0.9892 0.9887

U-Net+ResNeSt block 0.9806 0.9870 0.7928 0.9900 0.6538 0.8853 0.0102 0.9897 0.9898

U-Net+CCS
0.9805 0.9889 0.8127 0.9888 0.6579 0.8962 0.0091 0.9908 0.9898

+ResNeSt block

U-Net+CCS
0.9807 0.9894 0.8331 0.9878 0.6637 0.9070 0.0081 0.9918 0.9898

+ResNeSt block+FFM

Table 8. Ablation studies of our proposed method on STARE.

Method ACC AUC SEN SPE IOU Gmean FDR PRE DICE

U-Net 0.9686 0.9838 0.7924 0.9842 0.6761 0.8829 0.0183 0.9816 0.9829

U-Net+CCS 0.9714 0.9863 0.8061 0.9860 0.6973 0.8912 0.0170 0.9829 0.9844

U-Net+ResNeSt block 0.9755 0.9936 0.8320 0.9883 0.7355 0.9066 0.0148 0.9851 0.9867

U-Net+CCS
0.9759 0.9937 0.8217 0.9896 0.7372 0.9017 0.0157 0.9842 0.9869

+ResNeSt block

U-Net+CCS
0.9766 0.9938 0.8435 0.9883 0.7468 0.9129 0.0138 0.9861 0.9872

+ResNeSt block+FFM

Table 9. Ablation studies of our proposed method on IOSTAR.

Method ACC AUC SEN SPE IOU Gmean FDR PRE DICE

U-Net 0.9759 0.9794 0.8190 0.9920 0.7451 0.9001 0.0156 0.9843 0.9881

U-Net+CCS 0.9770 0.9741 0.8457 0.9885 0.7435 0.9132 0.0133 0.9866 0.9875

U-Net+ResNeSt block 0.9785 0.9895 0.8667 0.9883 0.7602 0.9246 0.0116 0.9883 0.9883

U-Net+CCS
0.9791 0.9902 0.8615 0.9895 0.7649 0.9223 0.0121 0.9878 0.9886

+ResNeSt block

U-Net+CCS
0.9786 0.9902 0.8772 0.9876 0.7643 0.9301 0.0107 0.9892 0.9884

+ResNeSt block+FFM

Table 10. Ablation studies of our proposed method on HRF.

Method ACC AUC SEN SPE IOU Gmean FDR PRE DICE

U-Net 0.9809 0.9707 0.6983 0.9939 0.6194 0.8308 0.0138 0.9861 0.9900

U-Net+CCS 0.9817 0.9728 0.7095 0.9944 0.6356 0.8383 0.0134 0.9865 0.9904

U-Net+ResNeSt block 0.9838 0.9850 0.7603 0.9943 0.6791 0.8683 0.0112 0.9887 0.9915

U-Net+CCS
0.9827 0.9848 0.7182 0.9949 0.6500 0.8436 0.0129 0.9870 0.9909

+ResNeSt block

U-Net+CCS
0.9834 0.9855 0.7671 0.9936 0.6769 0.8720 0.0109 0.9890 0.9913

+ResNeSt block+FFM
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indicate the integration of CCS and ResNeSt block is beneficial, which is also confirmed in
Table 7–10.

4.2.3. Effectiveness of the FFM

The FFM module is incorporated into the network architecture to enhance the semantic information
by means of the lateral output layer, thereby leading to a more precise vascular segmentation map.
According to Table 6, compared to ’U-Net+CCS+ResNeSt block’, all metrics improve except
SPE, which only decreases by 0.07%. Furthermore, to achieve a more precise assessment of the
influence of the FFM module on the experimental outcomes, we performed ablation experiments
on four other additional datasets. The results of these experiments further substantiate the efficacy
of the FFM module.

4.3. Segmentation of disease images

Clinically, retinal lesions can easily lead to vessel segmentation discontinuity in the lesion area.
To verify the adaptability of our CCS-UNet for lesion image segmentation, the results of four
lesion images in the STARE dataset, including Diabetic lesion, Retinitis, Bleeding and Exudation
are illustrated in Fig. 8. As shown in Fig. 8, both U-Net [19] and DF-Net [32] are not ideal for

Fig. 8. Segmentation results of abnormal fundus images including Diabetic lesion, Retinitis,
Bleeding and Exudation.
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identifying lesion regions in the face of retinal images with complex backgrounds, however, our
proposed CCS-UNet has strong anti-interference ability. (1) Diabetic lesion: Both U-Net and
DF-Net show vascular discontinuity, while our CCS-UNet is able to segment a more continuous
vessel. (2) Retinitis: Both U-Net and DF-Net show over-segmentation in the face of large lesions.
Our CCS-UNet segmentation results for retinitis images are very similar to the ground truth,
much better than U-Net and DF-Net. (3) Bledding: Although our CCS-UNet over-segments
the spurious blood vessels, it also performs better than U-Net and DF-Net. (4) Exudation: Our
CCS-UNet is able to restore the original detailed information more objectively, while U-Net and
DF-Net are more lacking. In conclusion, with the well-designed attention module, our proposed
CCS-UNet can distinguish the more detailed structure of the vessels from the complex vascular
background.

4.4. Advantages and limitations

This study demonstrates that our suggested CCS-UNet outperforms other existing vascular
segmentation techniques in terms of segmentation accuracy. As seen in Fig. 5, the model’s feature
extraction capability is improved through the incorporation of the ResNeSt block, which can
extract more fine vessels in retinal images with complex backgrounds. In addition, inserting the
CCS module in skip connection, an effective feature fusion approach, helps the network preserve
cross-channel information while enhancing region of interest identification. Finally, introducing
deep supervision provides the network with more semantic information, thus obtaining a complete
vessel segmentation map. Although our model has the superior performance, it still has some
limitations. Firstly, because of the introduction of ResNeSt Block, the model’s parameter count
and FLOPs have experienced a certain degree of augmentation. Secondly, owing to the overall
scarcity of image quantity in every vessel dataset, the generalization ability of our model is
limited to some extent. Even with the data augmentation strategy, the overfitting problem still
exists, so more high-quality databases are needed. Finally, the segmentation performance of our
model could be improved in the face of semantic contexts with more complex situations, such
as images of lesion regions with ooze and low contrast. Better capture of contextual semantic
information is a significant direction for model improvement.

5. Conclusion

This paper presents a CCS-UNet for increasing the accuracy of fundus vessel segmentation.
CCS-UNet leverages ResNeSt as the encoder-decoder backbone to enhance the feature extraction
performance, thereby facilitating the extraction of vascular information across various levels
of complexity. We proposes a CCS module that can preserve cross-channel information while
enhancing region of interest identification. Moreover, utilizing the FFM module aims to acquire
a wider range of semantic information to improve vessel maps’ quality. The proposed CCS-UNet
is validated on five medical image datasets. The network proposed in this study exhibits superior
performance across all five datasets compared to other contemporary techniques. In future
research, we intend to employ this model in various medical imaging assignments, including but
not limited to the aided diagnosis of pulmonary ailments.
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